## About

primesieve is a free (BSD-licensed) software program and C/C++ library that generates primes using a highly optimized sieve of Eratosthenes implementation. It generates the primes below 10^9 in just 0.2 seconds on a single core of an Intel Core i7-4770 3.4GHz CPU from 2013. primesieve can generate primes and prime k-tuplets up to 2^64.

## Screenshot

The above screenshot shows the first 16 prime septuplets (7-tuplets) generated using the primesieve console application. There is also a GUI version available, the screenshots page shows pictures of it.

## Algorithms

primesieve generates primes using the segmented sieve of Eratosthenes with wheel factorization, this algorithm has a complexity of operations and uses space.

Segmentation is currently the best known practical improvement to the sieve of Eratosthenes. Instead of sieving the interval [2, n] at once one subdivides the sieve interval into a number of equal sized segments that are then sieved consecutively. Segmentation drops the memory requirement of the sieve of Eratosthenes from to . The segment size is usually chosen to fit into the CPU's fast L1 or L2 cache memory which significantly speeds up sieving. A segmented version of the sieve of Eratosthenes was first published by Singleton in 1969 [1]. Here is a simple implementation of the segmented sieve of Eratosthenes.

Wheel factorization is used to skip multiples of small primes. If a
*k*th wheel is added to the sieve of Eratosthenes then only those
multiples are crossed off that are coprime to the first *k*
primes, i.e. multiples that are divisible by any of the first *k*
primes are skipped. The 1st wheel considers only odd numbers, the 2nd
wheel (modulo 6) skips multiples of 2 and 3, the 3rd wheel (modulo 30)
skips multiples of 2, 3, 5 and so on. Pritchard has shown in [2] that
the running time of the sieve of Eratosthenes can be reduced by a factor of
if the wheel size is
but for cache reasons the sieve of Eratosthenes usually performs best
with a modulo 30 or 210 wheel. Sorenson explains wheels in [3].

Additionally primesieve uses Tomás Oliveira e Silva's cache-friendly bucket list algorithm if needed [4]. This algorithm is relatively new it has been devised by Tomás Oliveira e Silva in 2001 in order to speed up the segmented sieve of Eratosthenes for prime numbers past 32 bits. The idea is to store the sieving primes into lists of buckets with each list being associated with a segment. A list of sieving primes related to a specific segment contains only those primes that have multiple occurrence(s) in that segment. Whilst sieving a segment only the primes of the related list are used for sieving and each prime is reassigned to the list responsible for its next multiple when processed. The benefit of this approach is that it is now possible to use segments (i.e. sieve arrays) smaller than without deteriorating efficiency, this is important as only small segments that fit into the CPU's L1 or L2 cache provide fast memory access.

## Implementation

primesieve is written entirely in C++ and does not depend on external libraries. It's speed is mainly due to the segmentation of the sieve of Eratosthenes which prevents cache misses when crossing off multiples in the sieve array and the use of a bit array instead of a boolean sieve array. primesieve reuses and improves ideas from other great sieve of Eratosthenes implementations, namely Achim Flammenkamp's prime_sieve.c, Tomás Oliveira e Silva's A1 implementation and the author's older ecprime all written in the late '90s and '00s. Furthermore primesieve contains new optimizations to increase instruction-level parallelism and more efficiently uses the larger number of registers in today's CPUs.

Optimizations used in primesieve

- Uses a bit array with 8 flags each 30 numbers for sieving
- Pre-sieves multiples of small primes ≤ 19
- Compresses the sieving primes in order to improve cache efficiency [5]
- Starts crossing off multiples at the square
- Uses a modolo 210 wheel that skips multiples of 2, 3, 5 and 7
- Uses specialized algorithms for small, medium and big sieving primes
- Processes two sieving primes per loop iteration to increase instruction-level parallelism
- Parallelized (multi-threaded) using OpenMP

This README file contains more technical implementation details.

## C++ library

Below is an example that shows how to generate primes in C++ using libprimesieve. You can browse primesieve's API online. The Build From Source page explains how to build libprimesieve and how to link against it.

```
#include <primesieve.hpp>
#include <iostream>
#include <vector>
int main()
{
// store the primes below 1000
std::vector<int> primes;
primesieve::generate_primes(1000, &primes);
primesieve::iterator pi;
uint64_t prime;
// iterate over the primes below 10^9
while ((prime = pi.next_prime()) < 1000000000)
std::cout << prime << std::endl;
return 0;
}
```

## C bindings

primesieve provides C bindings for all its functions, please refer to http://primesieve.org/api for more information.

## Performance

primesieve generates the first 50,847,534 primes up to 10^9 in just 0.2 seconds on a single core of an Intel Core i7-4770 3.4GHz CPU, this is about 50 times faster than an ordinary C/C++ sieve of Eratosthenes implementation and about 10,000 times faster than trial-division. primesieve outperforms the author's older ecprime (fastest open source prime number generator from 2002 to 2010) by about 30 percent and also substantially outperforms primegen the fastest sieve of Atkin implementation on the web. Here is a list of other fast sieve of Eratosthenes implementations.

## Timings

x | Prime Count |
Intel Core i5-670 (2 x 3.47GHz, 32K L1 Data Cache) |
AMD Phenom II X4 945 (4 x 3.0GHz, 64K L1 Data Cache) |
Intel Core i7-4770 (4 x 3.4GHz, 32K L1 Data Cache) |

10^{7} |
664,579 | 0.00s | 0.00s | 0.00s |

10^{8} |
5,761,455 | 0.01s | 0.01s | 0.01s |

10^{9} |
50,847,534 | 0.11s | 0.06s | 0.05s |

2^{32} |
203,280,221 | 0.54s | 0.26s | 0.23s |

10^{10} |
455,052,511 | 1.29s | 0.66s | 0.57s |

10^{11} |
4,118,054,813 | 16.11s | 8.57s | 6.63s |

10^{12} |
37,607,912,018 | 208.63s | 122.02s | 77.79s |

10^{13} |
346,065,536,839 | 2629.84s | 1664.68s | 926.83 |

The above benchmarks were run on a 64-bit Linux operating
system and primesieve was compiled using
GCC 4.8. For each benchmark
primesieve used all available CPU cores and the sieve size was set to
the CPU's L1 data cache size per core (Intel: 32 kilobytes, AMD: 64
kilobytes).

## CPU scaling

The above CPU scaling benchmark was run on a system with 8 physical CPU cores and 23 GB of memory. At each start offset the primes inside an interval of size 10^11 were counted using different numbers of threads. As one can see primesieve scales well if the interval is sufficiently large.

## References and notes

- R. C. Singleton, "An efficient prime number generator", Communications of the ACM 12, 563-564, 1969.
- Paul Pritchard, "Fast compact prime number sieves (among others)", Journal of Algorithms 4 (1983), 332-344.
- Jonathan Sorenson, "An analysis of two prime number sieves", Computer Science Technical Report Vol. 1028, 1991.
- Tomás Oliveira e Silva, "Fast implementation of the segmented sieve of Eratosthenes", 2002.
- Actually it is not the sieving primes that are being compressed but their sieve and wheel indexes.